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Abstract: We study details of the approach to the Hagedorn temperature in string the-

ory in various static spacetime backgrounds. We show that the partition function for a

single string at finite temperature is the torus amplitude restricted to unit winding around

Euclidean time. We use worldsheet path integral to derive the statement that the the

sum over random walks of the thermal scalar near the Hagedorn transition is precisely the

image under a modular transformation of the sum over spatial configurations of a single

highly excited string. We compute the radius of gyration of thermally excited strings in

AdSD × Sn. We show that the winding mode indicates an instability despite the AdS cur-

vature at large radius, and that the negative mass squared decreases with decreasing AdS

radius, much like the type 0 tachyon. We add further arguments to statements by Barbón

and Rabinovici, and by Adams et. al., that the Euclidean AdS black hole can thought of

as a condensate of the thermal scalar. We use this to provide circumstantial evidence that

the condensation of the thermal scalar decouples closed string modes.
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1. Introduction

Polchinski [1] has shown that the free energy of a gas of noninteracting strings on a spatial

manifold M at temperature T = β−1 is the partition function of a single string on a torus,

in the Euclidean background M × S1
β. Here the circle S1

β is the Euclidean time direction

and has radius β. As the temperature increases from below, there is a scalar string state

known as the “thermal scalar” with unit winding around S1
β which becomes a spacetime

tachyon [2 – 4] at the “Hagedorn temperature” TH ∼ ms = `−1
s . (Here `s is the string scale

and m2
s is the string tension). Near the Hagedorn temperature, this scalar dominates the

partition function [4 – 6]. If there are noncompact spatial dimensions, then the divergence

of the partition function near a phase transition arises from the infrared divergence of the

one-loop contribution of the tachyon. Even if all dimensions are compactified, the one-loop

partition function for the string gas diverges as ln(TH − T ) due to the appearance of the

tachyon.

On the other hand, in the presence of noncompact spatial dimensions, an ensemble of

strings at fixed energy is dominated by configurations with a single long string and a gas

of small, light strings [7 – 9]. The radius of gyration of a long string with energy E and
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tension `−2
s is 〈r2〉 ∼ `3

sE, indicating that the statistics of these strings are those of random

walks of length L = `2
sE.

The thermal scalar seems like a formal device, and it would be nice to better understand

the relation between the canonical and microcanonical descriptions of a gas of strings. One

hint appears in [6, 10]: if one computes the one-loop partition function of the thermal

scalar near the phase transition, it can be rewritten as the partition function of a single

string with density of states

ρ(E) =
eβHE

E1+α
, (1.1)

where α depends on the details of the worldsheet conformal field theory, such as the number

of noncompact dimensions.1 Furthermore, the correlation function of thermal scalars can

be computed via a sum over random walks.

Atick and Witten [4] argued, by analogy with the deconfinement transition in QCD,

that this transition should give some insight into the fundamental degrees of freedom of

string theory. Since equilibrium thermodynamics in flat space fails in the presence of

gravity, it is hard to know how far one can go with the perturbative flat space calcula-

tions. Anti-de Sitter (AdS) space, however, provides a convenient “box” for gravity, and

the anti-de Sitter/conformal field theory (AdS/CFT) correspondence [11] gives a definite

prescription for studying string theory at finite temperature in such backgrounds. In light

of this correspondence, one finds that there is indeed a relation between the Hagedorn

transition and deconfinement [12 – 14, 16 – 19, 15, 20], which we will explore further below.

The goal of our paper is twofold. First, we will make the relation between the thermal

scalar and random walks explicit, expanding on [6, 10], and apply our lessons to strings

in AdS backgrounds. Next, we will tie together some of our own calculations for string

theory in finite-temperature AdS backgrounds with previous work by other authors to flesh

a picture of the Hagedorn transition in AdS backgrounds.

More precisely, in section 2 we show that the partition function for a single string

at finite temperature can be written as the worldsheet torus amplitude restricted to unit

winding around the torus. If there are “noncompact” directions in the target space —

directions in which the spectrum of the momentum operator is continuous — then the the

single-string dominance of the microcanonical ensemble and the leading infrared singular-

ity of the thermal scalar contribution near the Hagedorn temperature are the same effect,

related by a worldsheet modular transformation. In completely compactified spacetimes,

or spacetimes like AdSD × Sn for which the momentum operator is discrete, single string

dominance fails to hold in the microcanonical ensemble, while in the canonical ensemble

the large-volume divergence of the thermal scalar is stripped away leaving the divergence

due to the existence of an unstable mode. In section 3 we explicitly derive, in a wide class

of static spacetimes, the statement that the sum over the spatial configurations of highly

energetic strings is precisely a sum over random walks. We compute the size of highly

excited strings in D-dimensional anti-de Sitter space (AdSD) times an n-sphere Sn, as a

1For the purposes of this paper, “noncompact dimensions” is a code for the presence of a continuous

spectrum of conformal dimensions on the worldsheet, or of a continuous spectrum for the momentum

operator. From this perspective, for example, anti-de Sitter space should be considered “compact”.
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function of temperature; and we show that the tachyon indicates a genuine instability in

AdS spacetimes. In section 4 we extend arguments of [21, 22, 10, 23] that the endpoint

of the condensation of the tachyon is the AdS black hole. We then provide some circum-

stantial evidence that the closed string modes decouple in the presence of the tachyon in

much the same way that open string excitations decouple when the open string tachyon

condenses [24 – 35]. In section 5 we give a brief conclusion.

We should note that many of the basic statements in section 2, 3 are contained

implicitly or explicitly in [6, 10]; while many of the statements in section 4.2 are contained

in recent work such as [21, 22, 10, 23, 36, 37], and are surely known to others. However,

we feel that our explicit derivation, the expanded discussion, and consolidation are worth

putting into print. Other recent work on the relation between excited strings and random

walks is [38].

2. The partition function for single strings

Polchinski showed that the partition function for a gas of strings in the canonical ensemble

at temperature T = β−1 can be computed as follows. Let the worldsheet conformal field

theory consist of a c = 25 (for the bosonic string) or ĉ = 9 (for the superstring) factor

for the spatial directions of the target space, times a c = 1 or ĉ = 1 CFT for the target

space circle S1
β with radius β. The free energy βF (β) is the vacuum torus amplitude for

the string in this Euclidean background [1]. One indication of this is that the amplitude

can be written as the sum over closed string modes of the free energy for a gas of particles

in each mode.

We will argue that the partition function for a single string at temperature β is the

vacuum amplitude in Euclidean space with periodic Euclidean time, restricted to unit

winding around S1
β.

2.1 Partition function for a single string

Consider a scalar particle, or a particle in a fixed eigenstate of spin angular momentum,

with mass m in flat space. The Euclidean spacetime is Md+1 = S1
β × Rd. The partition

function for one particle (as opposed to a gas of particles) with mass m in d spacetime

dimensions is:

Z =

∫

dd−1k

(2π)d−1
e−βωk ω2

k = ~k2 + m2 (2.1)

This can be written as a space-time integral:2

Z =

∫

ddk

(2π)d
2ik0eiβk0

k2 + m2
; (k2 = (k0)2 + ~k2 + m2)

=

∫

ddk

(2π)d

∫ ∞

0
ds(2ik0)eiβk0−s((k0)2+~k2+m2)

2This relation can be derived in various ways. An alternative is to use the identity e−β
√

m2+k2

=
β√
2π

R ∞
0

ds

s3/2
e−

1

2
(m2+k2)se−

β2

2s .
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= 2∂β

∫ ∞

0

ds

(2πs)d/2
e−

β2

4s
−m2s

= −β

∫ ∞

0

ds

s(2πs)d/2
e−

β2

4s
−m2s (2.2)

For a single string, one can sum this answer over all possible string states. The only

difference between this calculation and that of [1] is that we are looking at worldlines that

wrap once around the Euclidean time direction. Therefore, we can write the partition

function for a single string at spacetime temperature T = β−1 as:

Zs.s. =

∫ ∞

0

dτ

4πτ2
2

∫ 1
2

− 1
2

dτ1I(0,1)(τ) (2.3)

where I(m,n)(τ) is the one-loop partition function for the conformal field theory on the

torus with modular parameter τ = τ1 + iτ2, coordinates σ1 ∈ [0, 1], σ2 ∈ [0, 1], worldsheet

metric ds2 = |dσ1 + τdσ2|2, and boundary conditions

Xµ(σ1 + 1, σ2) = Xµ(σ1, σ2) + mβδµ,0

Xµ(σ1, σ2 + 1) = Xµ(σ1, σ2) + nβδµ,0 . (2.4)

Note that the integral is not over the fundamental domain of τ but rather along the

entire strip τ2 ≥ 0, −1
2 ≤ τ1 ≤ 1

2 . This is the fundamental domain of the subgroup τ → τ+1

of the full modular group. Under this transformation (c.f. [39]) the winding numbers (m,n)

are mapped to (m,n−m). Therefore the (0, 1) sector is invariant under this shift and one

should restrict the modular integral over (0, 1) to an integral over this strip.

One may further include the effects of the modular transformation τ → 1/τ . Under

thi-s transformation, however, (m,n) is mapped to (n,−m); in particular (0, 1) is mapped

to (1, 0). The (0, 1) sector is not invariant under the full modular group SL(2, Z). Its

image is the set of coprime integers (m,n). One may therefore rewrite the above partition

function as an integral over the fundamental domain F = {τ
∣

∣|τ1| ≤ 1
2 , |τ |2 ≥ 1}, and a sum

over Im,n with (m,n) coprime:

Zs.s. = −β

∫

F

d2τ

4πτ2
2

∑

(m,n) coprime

I(m,n)(τ) . (2.5)

2.2 Single string dominance and the Hagedorn transition

If we sum (2.5) over all (m,n) ∈ Z
2, the result is −β times the free energy for a gas of

strings at temperature β−1 [1]. If Zk is the partition function for k strings, and we fix our

normalization so that Z0 = 1, then the free energy can be written as

F = − 1

β
ln (1 + Z1 + Z2 + · · · )

= − 1

β

(

Z1 +

(

− 1

2
Z2

1 + Z2

)

+ · · ·
)

= − 1

β

(

Z[0,1] + Z[0,2] + · · ·
)

. (2.6)
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Here Z[0,k] comes from replacing I(0,1) in (2.3) with I(0,k), and Z[0,1] = Zs.s.. We will

demonstrate in appendix A that Z2− 1
2Z2

1 = Z[0,2]. Z[0,k] looks effectively like the partition

function for a single string at temperature 1/(kβ). Therefore, Z[0,1] = Zs.s. dominates

the free energy for a gas of strings at the Hagedorn temperature. We should note that the

partition function Z =
∑

k Zk generally contains divergences from each sector Zk, although

when there are noncompact spatial dimensions (e.g. the spectrum of conformal dimensions

is continuous) the divergences will be subleading for k > 1: it is well known that single

strings dominate the partition function for very high energies [7 – 9], and it is the high

energy states which dominate near the Hagedorn transition.

Strings in the sector (m,n) = (1, 0) become tachyonic at the “Hagedorn temperature”

(βH)−1 = (2
√

2π`s)
−1. If the number of noncompact spatial dimensions is nonzero, this

leads to an infrared divergence in the partition function characteristic of a massless scalar

field, characteristic of a phase transition [4]. This divergence is related under τ → −1
τ to

the ultraviolet divergence coming from the (m,n) = (0, 1) sector; this divergence arises

from the large UV density of states of a single string. In other words, the divergence in Z1

is mapped by a modular transformation to the infrared divergence in the free energy for

the thermal scalar. We will explore this map in detail in section 3.

Furthermore, the large-volume infrared divergence for the thermal tachyon is cut off

when all directions are compactified. It is known that in this case, a single long string no

longer dominates the ensemble at large energies [9, 10]. One is left with a divergence due

entirely to the negative eigenvalue of the tachyon kinetic term.

In short, in the presence of noncompact dimensions, the infrared divergence in F due to

the thermal scalar at the Hagedorn temperature is a re-encoding of single-string dominance,

via a worldsheet modular transform.

3. The random walk picture for excited strings

3.1 Review of the random walk picture of the thermal scalar

Studies of a gas of strings in the microcanonical ensemble [7 – 9] have shown that the single

string which dominates at large energies has a radius of gyration rg characteristic of a

random walk, r2
g = 〈δx2〉 ∼ `sL = `3

sE, where L is the length of the string, E the energy,

and m2
s = `−2

s the string tension. Horowitz and Polchinski [6] have also argued this from

the canonical ensemble. The essence of their argument can be summarized as follows. The

quadratic part of the thermal scalar Lagrangian is −1
2

∫

ddxφDφ, with D = ∇2 + m2
β and

m2
β =

β2
H−β2

4π(α′)2 [6]. The equation for the heat kernel of D:

(∇2 + m2
β)K = `s∂T K; K(~x, T = 0) = δ(d)(~x) (3.1)

can be solved by writing K = em2`sT P . Now,

P =
e−

|x|2
2`sT

(`sT )d/2
(3.2)
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β

τ σ

Figure 1: The path integral for a single string close to the Hagedorn temperature can be written

as sums over random walks of the thermal winding mode, or as random spatial configurations of

the string which wraps once around the thermal time direction.

solves the diffusion equation in d dimensions, which is also the equation for the probability

distribution of the position of a random walk of length T which begins at the origin. Near

m2
β = 0, we can write

m2
β =

β2
H − β2

4π2(α′)2
∼ βH(βH − β)

2π2(α′)2
(3.3)

Therefore, we find that

K = e
β2

H
2π(α′)2 `sT

P (~x, T )e
− βH`sT

2π(α′)2 β
(3.4)

Here βH = α′, the first factor eβ2
H`sT/2π(α′)2 on the right hand side is the total number of

random walks of length T , and the third factor e−βHβ`sT/2π(α′)2 is a Boltzmann suppression

factor.

The free energy for the thermal scalar is

F = −β ln Z = −β

∫ ∞

0

dT

T
K(0, T ) (3.5)

Here eβ2
H`sT/2π(α′)2P (0, T )/T is the number of closed paths of length T : the extra factor

of 1/T compensates for the fact that one may choose any point on the loop as the starting

place for the walk. The result is that the free energy for the thermal scalar is precisely the

partition function for a single static string with tension 1/2π(α′).

We would like to relate this result to the sum over massive string states in the following

way. As discussed in section 2, the worldsheet path integral on the torus with winding

number (1, 0) contains the path integral over the thermal scalar. Close to the Hagedorn

temperature, the path integral is dominated by large values of τ2. We identify this with

the Schwinger parameter T in the discussion above. However, as we noted in section 2, the

modular transformation τ → − 1
τ takes this path integral to one over a string with winding

number (0, 1). Large τ2 is mapped to small τ2. The sum over paths of the thermal scalar are

mapped to sums over spatial configurations of the string, which wraps the thermal circle

once as in figure 1. The random walks summed over in the thermal scalar path integral

should be precisely the spatial configurations of the string in the first-quantized picture.

We would like to understand the degree to which this picture is precise. In the string

theory path integral, one can write worldsheet coordinates t, σ such that the winding of the

string is in the t direction. A simple sum over random walks would be a sum over string

worldsheets for which the target space coordinates of the string depend only on σ: however,

in general the coordinates can depend both on the spatial coordinate σ on the worldsheet,

– 6 –
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β τ

σ

Figure 2: Periodic worldsheet contributing to the finite temperature path integral (the upper and

lower surfaces are identified). At temperatures away from the Hagedorn temperature, the string

oscillations will depend on Euclidean time.

and on the time direction t, as in figure 2. Nonetheless, for generic highly massive strings

we will directly derive this picture in a way that will generalize to strings in a large class

of static curved spacetimes, such as anti-de Sitter space, so we can compute the radius of

gyration of a string as a function of temperature in these spacetimes as well. Our general

results will be essentially those stated in [6], though we hope that our explicit derivation

and discussion of its validity will be of use. We will go on to derive the radius of gyration

of strings in anti-de Sitter space at finite temperature.

3.2 Path integral for highly excited strings in curved spacetimes

We study string theory on the target space S1
β×M9, parameterized by coordinates X0,...,d−1,

where X0 ≡ X0 + 2πβ. We will take target space metrics of the form:

ds2 = GµνdXµdXν = G00(X
i)(dX0)2 + Gij(X

i) dXidXj (3.6)

In particular we assume that translations in X0 are isometries of the metric. We are

interested in configurations such that Xµ(σ1+1, σ2) = Xµ, X0(σ1, σ2+1) = β+X0(σ1, σ2),

and Xi(σ1, σ2 +1) = Xi(σ1, σ2). The Polyakov action for strings on the torus in conformal

gauge is:

S = m2
s

∫

d2σ

[ |τ |2
τ2

Gµν∂1X
µ∂1X

ν − 2
τ1

τ2
Gµν∂1X

µ∂2X
ν +

1

τ2
Gµν∂2X

µ∂2X
ν

]

We wish to study the full partition function figure

Z =

∫ 1
2

− 1
2

dτ1

∫ ∞

0

dτ2

τ2
2

∆FP

∫

DX
∏

σ1,σ2

√

G(X(σα))e−S[X] (3.7)

in the small τ2 region of the integrand, which dominates for highly excited string states.

Note that we have kept the
√

G measure factor explicit, so that the path integral measure

– 7 –
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τ −1/τ

1/20−1/2 2−2 0

Figure 3: The domain |=mτ | ≤ 1

2
transforms under τ → −1/τ as shown. A simple way to

undersand the mapping is that circles around the origin map to circles around the origin but with

inverse radius (see the dashed circles in the figure).

is invariant under reparameterizations of the target space. The Fadeev-Popov determinant

∆FP is given by

∆FP =
1

τ2
det′∆ (3.8)

with ∆ the worldsheet Laplacian. The prime in the determinant indicates that we have

removed the zero mode.

We will make a change of variables τ → − 1
τ in the integrand, which is of course just

a modular transformation. Note that the τ measure d2τ
τ2
2

, the Faddev-Popov determinant

∆FP , and the path integral over X are separately modular invariant. The integration

domain is mapped to that shown in figure 3. The boundary conditions on Xµ become:

Xµ(σ1, σ2 + 1) = Xµ, X0(σ1 + 1, σ2) = β + X0(σ1, σ2), and Xi(σ1 + 1, σ2) = Xi(σ1, σ2),

and we will set X0 = βσ1 + δX0, where δX0 is periodic on the torus. The resulting action

on the torus is:

S = m2
s

∫

d2σ

[ |τ |2
τ2

(

G00

(

β2 + 2β∂1X
0 + (∂1X

0)2
)

+ Gij∂1X
i∂1X

j
)

−2
τ1

τ2

(

G00β∂2δX
0 + G00∂1δX

0∂2δX
0 + Gij∂1X

i∂2X
j
)

+
1

τ2

(

G00(∂2δX0)
2 + Gij∂2X

i∂2X
j
)

]

(3.9)

Having made a the transformation τ → −1/τ , we are interested in the limit of large

τ2. In that limit from eq. (3.9) we see that configurations such that ∂1δX
0 6= 0 and/or

∂1X
i 6= 0 are highly supressed in the path integral. However, one cannot completely ignore

the effects of these terms: in the limit of large τ2, the oscillator modes contribute to the

vacuum energy and thus lead to a contribution ecπ/6 to the path integral, where c is the

number of oscillators. We can combine this factor with the large-τ limit of ∆FP :

1

τ2
det′∆

τ2→∞∼ τ2e
−π

3
τ2 (3.10)

For the case of the superstring, the superconformal ghosts and fermion superpartners will

lead to similar terms in the path integral. Their effect is to add a term of the form

– 8 –
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δS = −
∫ 1
0 dσ2m2

sβ
2
Hτ2 to the action. If we include this term and set all the ∂1 derivatives

to zero, we can write the resulting action as:

S = m2
s

∫

dσ2

[

1

τ2
(Gij∂2X

i∂2X
j) + τ2

(

G00β
2 − β2

H

)

+
β2G00

τ2

(

τ1 −
∂2X

0

β

)2
]

(3.11)

The path integral over X0 is Gaussian and can be evaluated exactly. The equation of

motion for X0 is

∂2

[

G00

(

τ1 −
∂2X

0

β

)]

= 0 (3.12)

with solution

∂2X
0 = βτ1 −

C

G00
(3.13)

where C is a contant of integration which can be found using the condition that X0 is

periodic in σ2:

0 =

∫ 1

0
dσ2 ∂2X

0 ⇒ C = βτ1

(
∫ 1

0

dσ2

G00

)−1

≡ βτ1〈G−1
00 〉−1 , (3.14)

where we define 〈F 〉 =
∫ 1
0 dσ2F . After we expand around this classical solution, the path

integral over X0 gives

∫

DX0(σ2)e
−m2

s
τ2

R

dσ2G00(βτ1−∂2X0)2
= e

−m2
sβ2τ2

1
τ2

〈G−1
00 〉−1

∫

DX0(σ2)e
−m2

s
τ2

R

dσ2G00(∂2X0)2

= N0τ
− 1

2
2 〈G−1

00 〉−
1
2 e

−m2
sβ2τ2

1
τ2

〈G−1
00 〉−1

(3.15)

where N0 is an infinite normalization factor that we are going to drop. (This integral can

be done by discretizing σ2 and taking the step size to zero at the end). We must, however,

keep the
√

G00 contribution to the
√

G part of the path integral measure. Since we are

studying metrics of the form (3.6), we can factor it out of the integral over X0.

Replacing the result (3.15) in eq. (3.7) and performing the τ1 integration we obtain

Z ' 1

β

∫ ∞ dτ2

τ2

∫

X(0)=X(1)
DX(σ2)

∏

σ2

√

G00 detGij(X(σ2)) × (3.16)

×e
−m2

s

R 1
0

dσ2

h

1
2τ2

(Gij∂2Xi∂2Xj)+τ2(β2G00(X)−β2
H)

i

. (3.17)

By writing σ2 = τ2t, we can write this as:

Z ' 1

β

∫ ∞

0

dτ2

τ2

∫

X(τ2)=X(0)
DX

√

G00 detGije
−

R τ2
0 dtL(X) (3.18)

where

L =
m2

s

2
Gij∂tX

i∂tX
j + m2

sβ
2G00 − β2

H . (3.19)

This is clearly an integral over random walks of the thermal scalar. The paths are images

under the modular transformation τ → 1/τ of configurations of strings at temperature β.
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The path integral over Xi can in principle be computed in the following way. The

integral over DX in (3.18) is the heat kernel for the thermal scalar:

K( ~Xt, t; ~X0, 0) =

∫

X(0)=X0,X(t)=Xt

DX
√

G00Gije
−

R t

0
dt′L (3.20)

and solves the diffusion equation:

− 1
√

G00 det Gij

∂i

√

G00 detGijG
ij∂jK +

(

β2G00 − β2
H

)

K ≡ HK = −∂tK (3.21)

with boundary conditions

lim
t→0

K(Xt, t;X0, 0) = δ(Xt = X0) (3.22)

Note the factors of G00 in the wave equation; these arise from the explicit factors in the

measure. The thermal partition function for a single string can be written (assuming it is

dominated by large τ2) as:

Z ' 1

β

∫ ∞

0

dτ2

τ2

∫

dX0K(X0, τ2;X0, 0) (3.23)

We can write K as a sum over eigenmodes of H:

K =
∑

n

Anψn(Xt,X0)e
−Ent (3.24)

this sum could be discrete or continuous. If H has a discrete spectrum with approximate

spacing δ between energy levels, then for t À 1/δ, K can be well-approximated by the

ground state wavefunction for the tachyon. This is not the case for the string in flat space

— K then has a continuous spectrum, and the string spreads without bound as τ2 → ∞,

as described in section 3.1.

3.3 The radius of gyration for highly excited strings

Given the propagator K as defined in (3.20), we can compute the typical size of a string

as a function of the temperature β. We take as this typical size

(δx)2 =
1

βZ

∫ ∞

0

dτ2

τ2

∫ τ2

0

dt

τ2
〈(X(t) − X(0))2〉(τ2) (3.25)

where

〈(X(t) − X(0))2〉 =

∫

ddXt

√

G00 detGij(Xt)

∫

ddX0

√

G00 detGij(X0)

×K(X0, τ2;Xt, t)(Xt − X0)
2K(Xt, t;X0, 0) (3.26)

As with the propagator itself, if the spectrum of H is discrete with level spacing δ, and the

integral in (3.25) is dominated by sufficiently large τ2 À 1/δ, we can approximate K by
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the ground state wavefunction A0ψ0e
−E0t. To see this, let us approximate K by the first

two terms in (3.24):

K(X2, t2;X1, t1) = A0ψ0(X2,X1)e
−E0(t2−t1) + A1ψ1(X2,X1)e

−E1(t2−t1) + · · · (3.27)

We can then perform the integral over t in (3.26):
∫ τ2

0

dt

τ2
K(X0, τ2;Xt, t)K(Xt, t;X0, 0) = A2

0ψ0(X0,Xt)ψ0(Xt,X0)e
−E0τ2

+A2
1ψ1(X0,Xt)ψ1(Xt,X0)e

−E1τ2

+
A0A1

τ2(E1 − E0)

(

e−E0τ2 − e−E1τ2
)

(3.28)

×(ψ0(X0,Xt)ψ1(Xt,X0) + ψ1(X0,Xt)ψ0(Xt,X0))

The first term clearly dominates when τ2 À 1
E1−E0

. In this case, the radius of gyration

rg =
√

(δx)2 can be well approximated by the width of the ground state wavefunction ψ0.

3.4 Excited strings in anti-de Sitter space

We would like to study the results of the previous section for the spacetime AdSD ×
Sn, where each factor has radius of curvature R, as we would find in Freund-Rubin-type

compactifications of supergravity [40]. We will assume R À `s, so that the worldsheet

sigma model is weakly coupled. The metric for this spacetime is

ds2 = −
(

1 +
r2

R2

)

dt2 +
dr2

(

1 + r2

R2

) + r2dΩ2
D−2 + R2dΩ2

n (3.29)

where dΩ2
k is the metric for a k-sphere with unit radius. Note that these backgrounds in

string theory typically have Ramond-Ramond tensor fields. While this implies a far more

complicated worldsheet action than the one we are studying, we will ignore this effect and

focus on the worldsheet action for the bosonic modes.

In this case, the propagator K satisfies the wave equation

−1

rD−2
∂r

(

rD−2

(

1 +
r2

R2

))

∂rK − ∇2
D−2

r2
K

−∇2
n

R2
K +

β2

`4
s

(

1 +
r2

R2

)

K − β2
H

`4
s

K = −∂tK (3.30)

where ∇2
k is the Laplacian on the unit k-sphere. This equation is separable: if θa denote the

angular coordinates in AdSD and ψm the angular coordinates along Sn, then the solution

to (3.30) satisfying the required boundary conditions is:

K(r, θ, ψ) = KD(r, θ, t)Kn(ψ, t) (3.31)

where

HDKD =
−1

rD−2
∂r

(

rD−2

(

1 +
r2

R2

))

∂rKD − ∇2
D−2

r2
KD

+
β2

`4
s

(

1 +
r2

R2

)

KD − β2
H

`4
s

KD = −∂tKD (3.32)
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and

HnKn − ∇2
n

R2
Kn = −∂tKn (3.33)

Even without the additional tachyon mass term, the spectrum of the Laplacian in the

above coordinates (covering all of AdS) is discrete. The tachyon wave equation, with the

additional mass term will certainly have a discrete spectrum as well. Therefore, from the

standpoint of string thermodynamics, this spacetime behaves as if the spatial directions

are completely compactified — the power-law prefactor α in the density of states

ρ(E) =
eβHE

E1+α

arises from target space directions which leads to a continuous spectrum of eigenvalues of

the tachyon wave operator. In the case of AdSD spacetimes, we expect that α = 0 for

energies high enough that the curvature of AdSD ×Sn begins to affect the string spectrum.

We can think of anti-de Sitter space as a hyperbolic space with a gravitational potential.

Random walks in hyperbolic space tend to move towards the boundary at infinity [41],

which is entropically favored due to the large volume there. However, we will see that the

gravitational potential overwhelms this tendency, so that the radius of gyration for random

walks asymptotes to a finite value.

For sufficiently small temperatures and energies, we expect the string to act like a

string in flat space — its size rg =
√

(δx)2 ∼
√

(`3
sM) scales with the square root of

the length L ∼ `2
sM , where M is the mass of the string state. As the temperature and

thus the average energy M increases, the string will spread. The integral over the modular

parameter τ2 has a saddle point at roughly 1/M (more precisely, under a modular transform

τ = −1/τ ′, the paths of the thermal scalar become string configurations, and τ ′M where

M is the mass of the excited string state). We will find that there are two characteristic

temperatures at which the string starts to feel the curvature. At the lower temperature

T1, the dominant values of τ2 in (3.25) are long enough that KD is well-approximated by

its ground state wavefunction, and the string stops spreading in the AdS direction. At a

higher temperature T2 the string spreads over the entire Sn, and rg can increase no further.

Kn satisfies the heat equation on Sn: solutions can be found, for example, by analytic

continuation of the results in [42, 43] to Euclidean space. If s is the geodesic distance on

Sn between Xt and X0, and R the radius, and p = cosh s
R ,

K(Xt,X0; t) =
1

(2πR2)
n
2

(

d

dp

)
n
2
−1 ∞

∑

k=0

Pk(p) exp

{

− t

R2

(

(

k +
1

2

)2

−
(

n − 1

2

)2
)}

(3.34)

where Pn are the Legendre polynomials. Note that the eigenvalues of ∂t have spacing of

order

δn ∼ 1/R2 ,

as implied by (3.33).

KD cannot be solved exactly. However, we can estimate the level spacing for the

lowest eigenvalues of ∂t, and the width of the corresponding wavefunctions, using scaling
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arguments. Begin by defining dimensionless variables x = r
R . The eigenvalue equation for

the left hand side of (3.32) is:

1

R2xD−2
∂r

(

xD−2(1 + x2)
)

∂rK − ∇2
D−2

R2x2
K +

β2

`4
s

x2K +
δβ2

`4
s

K = EK (3.35)

where δβ2 = β2 − β2
H . Let us multiply the whole equation by R2. Defining dimensionless

parameters E = R2E,

µ = E − δβ2R2

`4
s

, (3.36)

and

α2 =
β2R2

`4
s

we find that the eigenvalue equation is completely controlled by α:

− 1

xD−2
∂x

(

xD−2(1 + x2)
)

∂xK − ∇2
D−2

x2
K + α2x2K = µK (3.37)

In the cases we are interested in, we expect α to be large. That is, we are interested

in string theory on spaces for which R/`s À 1. We may also tune β. However, we are

interested in temperatures high enough so that the radius of gyration is significantly affected

by the AdS background. We will find that such temperatures are (self-consistently) very

close to β−1
H ∼ ms.

In the limit of large α, the quadratic “potential” term in (3.37) should ensure that

the eigenfunctions have a small width. If we define x = y√
α
, we can write the first term

in (3.37) as
α

yD−2
∂y

(

yD−2

(

1 +
y2

α

))

∂yK ' α

yD−2
∂yy

D−2∂yK (3.38)

Therefore, we can rewrite (3.37) as

H K = − 1

yD−2
∂yy

D−2∂yK − ∇2
D−2

y2
K + y2K =

µ

α
K (3.39)

In these units, we can expect that the low-lying eigenfunctions of H have width (δy)2 ∼ 1

and eigenvalues µ/α ∼ 1. Translated into our original dimensionful variables, we find that

the width of the low-lying eigenfunctions of HD is approximately:

(δr)2 ∼ R2

α
=

`2
sR

β
(3.40)

while the energy eigenvalues are of the order

E ∼ α

R2
+

δβ2

`4
s

=
β

`2
sR

+
δβ2

`4
s

(3.41)

and the gap between energy levels can be expected to be of order

δD ∼ α

R2
=

β

`2
sR

.
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We can see from (3.40) a major difference between long strings in AdS space and flat space.

In the latter case, the radius of gyration would diverge as β → βH [6].

We expect that the picture of single strings at finite temperature is as follows. At low

enough temperatures, the strings are small and do not feel the curvature of AdSD × Sn.

The radius of gyration grows as the square root of their mass: r2
g ∼ `3

sM . For highly

massive strings in flat space, the integral over the modular parameter τ2 has a saddle point

at τ2 ∼ 1
`sM . After the modular transform to the thermal scalar picture, and rescaling,

this becomes τ2 ∼ M . In the canonical ensemble for a single string in flat space, we can

write (see for example [6]):

M =
`s

δβ2
(3.42)

Therefore the string becomes massive and large as β approaches βH ∼ `s. When the

temperature grows to temperature T1 such that M ∼ R
`sβ , the integral over τ2 can be

expected to have a saddle point at τ2 ∼ `3
sM = r2

g ∼ `2sR
β . At this point, τ2 is of the

order of the level spacing δD for eigenvalues of the operator HD. For higher temperatures,

therefore, we expect that K is well-approximated by the ground state wavefunction and

the string ceases to grow in the AdSD direction. We should still be able to use (3.42) to

estimate the temperature, as the flat space approximation is only just starting to fail: we

find that δβ2 ∼ `3s
R ¿ `2

s; the temperature is quite close to the Hagedorn temperature.

The string has stopped expanding in the radial direction of AdSD because of the

gravitational potential. However, the string can still expand in the Sn direction. We expect

the expansion of the string in this direction to be essentially that of a string in R
n, until

the size of the string is of order the Sn radius R. We expect that at this point, the integral

over τ2 is dominated by values of order M`3
s ∼ r2

g ∼ R2, and Kn is well-approximated by

the constant mode on Sn.

At this point the string feels the curvature in all spatial directions, and for all intents

and purposes sees the spacetime as being completely compactified. As discussed at the end

of section 2, single string dominance will cease at this point, and multiple-string states will

start to become equally likely.

One might have wondered whether the thermal scalar would lead to an instability

above some temperature TH = β−1
H . AdS space allows for tachyons that do not indicate

instabilities [44, 45]. Furthermore, in AdS space at finite temperature, the proper radius

of the Euclidean time direction grows as one approaches the boundary of AdS. Thus the

mass of the thermal scalar gets large and positive at large radius, after the fashion of the

“localized” and “quasi-localized” tachyons discussed in [46, 23, 36], so that the tachyon

is at best localized in the center of AdS space [21]. However, so long as a ground state

wavefunction exists with the scaling properties we have described, we are guaranteed such

an instability. For fixed µ, α, (3.37) is independent of the temperature, and a lowest value of

µ/α will exist and be of order 1. However, the relationship between µ and E is temperature-

dependent, leading to the statement (3.41). It is clear that E will become negative when

β2 ∼ β2
H − O(`2

s/R): the Hagedorn temperature will be raised by a factor of order 1/R.

It might be tempting to speculate that for R ¿ `s, this tachyon is lifted. In the case

of AdS5 × S5 compactifications, this regime is dual to a weakly coupled gauge theory. A
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similar story was proposed for the tachyon in type 0 theories [47 – 49]. On the other hand,

in those theories, there is evidence that the instability persists in the weakly-coupled large-

N gauge theory [50, 51] as a Coleman-Weinberg-type instability. In the case of large-N field

theories at finite temperature on S3 (dual to AdS5 in global coordinates), the Hagedorn

transition is also known to exist at weak coupling [14, 18, 19].

4. The Hagedorn transition in anti-de Sitter spacetime

In this section we will study the Hagedorn transition in AdS spacetime. In flat space,

above the Hagedorn temperature, the thermal scalar becomes a tachyon. One expects

the high-temperature phase on Euclidean space to correspond to a vev for this scalar.

This is analogous to the statement [52, 53] that the Polyakov-Susskind loop P tr e−
H

A0dx0

(or its norm squared [14]) gets an expectation value in the deconfined phase of gauge

theories. In string theory, this transition is highly problematic in flat space — as discussed

in the introduction and in [4], the canonical ensemble does not strictly exist for interating

strings even below the Hagedorn temperature; while above the Hagedorn temperature,

the condensation involves free energies of order the inverse gravitational coupling, and

computational control is lost.

However, for string theory in anti-de Sitter spacetimes the AdS curvature provides a

“box” in which to study string theory, and provides a dual field theory description for which

one expects thermodynamics to be well defined. For example, as we will argue below follow-

ing refs [54, 21, 10, 23], the analogy between the thermal scalar and the Polyakov-Susskind

loop can be made precise in anti-de Sitter spacetimes which are dual to (conformal) gauge

theories. (These conformal field theories do not confine, but the large ’t Hooft coupling

theories do exhibit charge screening at high temperatures [56], and the theories at weak and

strong coupling do see a jump in their free energies from O(1) to O(N2) [55, 54, 14, 18].)

This is related to the statement, discussed in [21, 22, 10] that the natural endpoint of the

condensation process is the Euclidean black hole.

In anti-de Sitter space at the Hagedorn transition, the wavefunction for the tachyonic

thermal scalar is localized near the origin, where the mass is smallest. The condensation of

localized tachyonic winding modes has been studied recently [23] with the conclusion that

the winding direction pinches off. As we will discuss, in thermal AdS space times this is

consistent with the endpoint being the AdS black hole.

4.1 Endpoints of the condensation of the thermal scalar

The following picture of the thermodynamics of string theory on global AdS5 appears to

hold at weak and strong coupling [55, 54, 14, 18, 19]. As the temperature reaches 1/R, large

and small black holes become extrema of the free energy. At a higher temperature also

of order 1/R, the theory undergoes a first-order Hawking-Page phase transition [57] and a

“large” black hole with horizon radius rs > R becomes thermodynamically preferred. The

“small” black hole solution has horizon radius less than R; as one increases the temperature

beyond the Hawking-Page transition temperature, its free energy is larger than that of

thermal AdS or of the large AdS-Schwarzchild black hole. As argued by [21, 22, 10, 19], at
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Figure 4: The free energy F (Φ) as a function of the log of the norm of W (C), as the temperature

increases. The labels T,S, and L label the extrema of the free energy corresponding to “thermal

AdS”, the “small” black hole, and the “large” black hole, respectively. Figure (a) represents the

free energy at a temperature just above that at which the black hole solutions begin to exist. Figure

(b) represents a temperature above the Hawking-Page transition temperature, for which the large

black hole is thermodynamically stable. Figure (c) represents the Hagedorn transition, at which T

and S merge and thermal AdS becomes a local maximum of the free energy.

temperatures of order the Hagedorn temperature, the small black hole and thermal AdS

solutions coalesce. At these temperatures the horizon of the small black hole will have

curvatures of order the string scale, and should undergo a transition to a long fundamental

string [58].

The natural picture of the free energy is shown in figure 4. The order parameter shown

is related to the Polyakov-Susskind loop in the gauge theory. More precisely, we want to

compute something like the vev of the norm of the “Maldacena-Wilson” loop that includes

the adjoint scalars in the N = 4 vector multiplet:

W (C) = tr exp

(

i

∮

dt
(

ẋµ(t)Aµ − iyi(t)Φ
i
)

)

. (4.1)

This can be computed by studying worldsheets wrapping the thermal circle in Euclidean

AdS5 × S5 [56, 59, 60, 64]. It is important that we compute the norm [14]: in finite

volume, one should integrate over the phase of the W (C), leading to a vanishing expectation

value [54, 14]. The statement in the bulk dual at strong coupling is that one should integrate

over the value of the NS-NS B-field through the “cigar” parameterized by t, ρ [54].

We would like to relate a nonvanishing vev for the norm of W (C) to a condensate of

thermal scalars in the bulk. The basic argument is as follows. The expectation value of
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W (C) in the gauge theory is dual to the classical action of a fundamental string worldsheet

which wraps the Euclidean time direction in the bulk [54, 56, 59 – 62].3 In AdS space-

times, no such classical solution exists. In the presence of a condensate of winding modes,

however, the worldsheet can end at the condensate, since a condensate of winding modes

spontaneously breaks winding number.

On the other hand, at finite temperature the the expectation value of this loop can

be calculated in the dual supergravity backgrounds corresponding to extrema of the free

energy, without reference to the thermal scalar. The existence of nontrivial solutions arises

in the presence of black holes, which change the topology of the spacetime so that a circle

along the Euclidean time direction can be contracted to a point at the black hole horizon.

We can show that at strong coupling, ln
√

〈|W |2〉 = rs for a black hole with radius rs.

One performs the bulk computation of W (C)by computing the action of a string worldsheet

which wraps the t, ρ plane at fixed angular coordinate [54, 56, 59 – 62] and which asymptotes

to the curve C at the boundary of AdS.4

To compute the norm squared of W (C), we will compute the correlator of two such

loops placed on the antipodes of the spatial S3 in the gauge theory. At large N , the

disconnected part of the correlator should dominate, so that

〈W (C)W †(C̃)〉 ≡ 〈|W (C)|2〉 (4.2)

where if C is a curve along Eulcidean time and localized at a point x ∈ S3, then C̃ is the

curve along Eucildean time localized at the antipode of x in the S3.

In general these worldsheets are infinite due to the large-ρ limit, corresponding to UV

divergences in the field theory calculation [56, 64]. We will regulate these by subtracting

the contribution to 〈W (C1)W (C2)〉 in thermal AdS.5. The result is that the regulated

correlator vanishes for the thermal AdS contribution, reflecting the fact that the topology of

thermal AdS forbids a classical worldsheet contributing to 〈W (C)〉 even before integrating

over the NS-NS B field.

The metric of both AdS space and the AdS black hole can be written as:

ds2 = f(r)dt2 +
1

f(r)
dr2 + r2dΩ2

3 (4.3)

For AdS space, f(r) = 1 + r2

R2 . For the AdS5 black hole with mass M ,

f(r) = 1 +
r2

R2
− 8GNM

3πr2
= 1 +

r2

R2
− wM

r2
(4.4)

3The calculations listed in the references above were done in Poincaré coordinates, and aside from [54]

were concerned with Wilson loops or with computing the quark-atiquark potential. A calculation of this

potential in global AdS can be found in [63].
4In principle our calculation is too quick. For example, we are ignoring y(t) in (4.1). In general,

expectation values and correlators of W (C) have a linear divergence unless ẋ2 = ẏ2 [64]. Nonetheless, we

are interested in the behavior of the string worldsheet deep in the interior of the AdS and AdS-Schwarzchild

geometries. Therefore we expect our calculation, with our cutoff, to be qualitatively correct.
5Again, see the caveats in the previous footnote
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Here GN ∼ `3
p,5 is the five-dimensional Newton’s constant. `p,5 is the five-dimensional

Planck length. Note that R5`3
p,5 = `8

p,10, where `p,10 is the ten-dimensional Plank scale.

The Schwarzchild radius rh, the location of the horizon in these coordinates, is the

largest root of f = 0,

r2
h =

R2

2

(

−1 +

√

1 +
4wM

R2

)

(4.5)

Note that for `3
p,5M ¿ R2, r2

h ∼ 2`2
p,5M ¿ R2. The black hole is much smaller than the

AdS radius of curvature and is well-approximated by the 5d Schwarzchild black hole in flat

space. For `3
p,5M À R2, r2

h ∼ 2R
√

wM and the black hole is a 5d AdS-Schwarzchild black

hole with size much larger than the AdS radius.

The corresponding temperature is set by the requirement that the metric be nonsin-

gular when f = 0. This leads to:

β =
4πR2rh

4r2
h + 3R2

(4.6)

Solving for rh we find two radii for a given temperature:

rh =
πR2

2β

(

1 ±
√

1 − 3β2

π2R2

)

(4.7)

which correspond to the “small” and “large” black holes with radii smaller and larger,

respectively, than the AdS radius. Note that rh represents the minimum of the coordinate

r. When β ¿ R, well above the Hawking-Page transition temperature,

rh =
πR2

2β
or

3β

2π
(4.8)

for large and small black holes, respectively.

We compute the action of the string wrapping the r, t coordinates by computing the

Nambu-Goto action. Let the worldsheet coordinates be τ, σ so that t = τ , r = σ. Then

S =

∫ β

0
dτ

∫ rmax

rh

dσ = β(rmax − rh) (4.9)

where rmax → ∞ is a cutoff on the worldsheet action, representing a UV cutoff in the

definition of the W (C) [56]. Similarly, the contribution of thermal AdS to the correlator of

two such loops placed on antipodes of the S3 is just 2βrmax. We can subtract half of this

to find that Φ ≡ ln
√

〈|W |2〉 = 0, rh,small(β), rh,large(β) for thermal AdS, the small black

hole, and the large black hole, respectively. In the high temperature limit β À R,

Φ = 0 for thermal AdS

=
3

2πT
for the “small” black hole at temperature T

= πR2T for the “large” black hole at temperature T (4.10)

justifying the identification by [14, 18, 19] of the maxima and minima of the free energy

diagram seen in figure 4.

– 18 –



J
H
E
P
0
7
(
2
0
0
6
)
0
3
1

As we discussed above, we also expect a non-zero expectation value for Φ if the thermal

scalar condenses. A worldsheet stretching from C on the boundary along r, t would extend

along the r direction. At a point where it met the condensate, the worldsheet would be

able to end, due to the presence of winding modes.

To see how the supergravity calculation of Φ and the thermal scalar picture might

be related, consider at the Hagedorn temperature for string theory in AdS space. As

noted by [19], at temperatures of order the string scale, the “small black hole” solution

has a horizon of order the string scale. This is the Horowitz-Polchinski correspondence

point [58], and at higher temperatures the black hole is expected to be better described

as a long string. On the other hand, the “thermal AdS” solution corresponds to a gas of

strings and supergravity particles at finite temperature: close to the Hagedorn transition,

the dominant configurations are single very long strings [7 – 9]. It is reasonable to conjecture

that at this temperature the local maximum of the free energy F (Φ) corresponding to the

“small black hole” merges with the metastable minimum corresponding to thermal AdS

space. This would correspond to a tachyonic instability in F (Φ). At the same time, one

expects the thermal scalar to become a quasilocalized tachyon in AdS space. A natural

guess for the endpoint of this condensation process is the big black hole [21].

Adams et. al [23] have studied quasilocalized tachyons corresponding to winding modes

on cylinders with antiperiodic boundary conditions for fermions, whose radius becomes

smaller than `s in some region of the cylinder. They have argued that the condensation

of the tachyon leads to the “pinching off” of the cylinder,m as shown in figure 5. This is

consistent with the well-known RG flow of the 2d Gaussian (or “XY”) model on a circle

above the Kosterlitz-Thouless transition [65, 66]. The winding modes of the string around

the circle are the vortices of the XY model, and as the vortices condense, the radius of

the circle is driven to zero. Furthermore, according to [23, 37] the tachyon potential on

the worldsheet suppresses fluctuations of the string in the region where the tachyon has

condensed, much like the worldsheet description of D-brane decay in [67].

We therefore expect that below the Hagedorn transition, the free energy curve F (Φ)

shown in figure 4 can be swept out by “turning on” the thermal scalar. In thermal AdS

it is an irrelevant operator on the worldsheeet, but in the presence of the “small” black

hole, the tachyon becomes a relevant operator, and can induce an RG flow either back to

thermal AdS or to the “big” black hole. Heuristically, a worldsheet wrapping the thermal

circle and extending in the bulk can end on the condensate of winding modes. On the other

hand, we know that in black hole backgrounds, the vev 〈W (C)W (C̃)〉 is nonzero because

the thermal circle pinches off at the horizon. By the discussion in the previous paragraph,

we expect that these two mechanisms are somehow dual to each other, and in Schwarzchild

coordinates the physics of the black hole horizon is related to the physics of the thermal

scalar.6

Previous work has also indicated that the horizon in supergravity is related to the

tachyon condensate. As Dabholkar [70] has discussed, following earlier insights by Susskind

6Horowitz [36] suggests that for extremal black holes, the thermal scalar condenses near the horizon and

modifies the geometry, providing a possible reconciliation between the string theory [68] and supergrav-

ity [69] calculations of the entropy of an extremal black hole.
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(b)

(a)

Figure 5: A cylinder with varying radius. The region between the heavy black lines in (a) represents

a region for which strings winding around this circle become tachyonic. Figure (b) represents the

conjectures endpoint of the condensation of this tachyon.

and Uglum [71], this may help us understand the Bekenstein-Hawking entropy of the black

hole. Dabholkar begins with the following observation from [71]. The near-horizon geom-

etry of the Schwarzchild black hole is Rindler space,

ds2 = −ρ2dt2 + dρ2 + · · · (4.11)

Upon Euclidean continuation, we find that t ∼ t + 2π is required to avoid a conical deficit

angle. This means that Euclidean time has a periodicity equal to the temperature of the

black hole. Now the entropy should be S = β2∂βF , where F is the free energy computed

in this background. To vary theta, one must vary the periodicity of t and so introduce a

conical deficit angle. Dabholkar computed the free energy as a function of this angle by

computing the free energy for the nonsupersymmetric orbifold C/ZN , which has a conical

definit angle 2π
(

1 − 1
N

)

These orbifolds have twisted sector tachyons, inducing decays

from C/ZN → C/ZN−2. The free energy of these orbifolds scale linearly with N . By

analytically continuing in N one computes S = β2∂βF exactly reproducing the tree-level

Bekenstein-Hawking entropy.

The tachyons inducing decay of the orbifold [46] are concentrated at the tip of the

cone. In the light of the above description of the “pinching off” of AdS space to form

a Euclidean black hole, via condensation of the thermal winding modes, it is natural to

identify these localized tachyons as being excitations of the winding mode condensate. The

winding modes induced the pinching off of the thermal circle, so it is natural that shifting

this condensate should change the geometry of the cones along the lines of [46, 70].

In Lorentzian signature, the thermal scalar has a less direct interpretation. The results

of sections 2, 3 indicate that the dominance of the thermal scalar in the partition function

near the Hagedorn transition is dual in some sense to the dominance of long strings in the

microcanonical ensemble. We speculate that the appearance of closed string tachyons in
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computing the black hole entropy is a sign that the entropy is accounted for by long strings

near the horizon, after the fashion of [71].

4.2 A conjecture regarding the tachyon potential

In the previous section, following refs. [21, 22, 14, 18, 19], we pointed out that the free energy

diagram for finite-temperature strings in anti-de Sitter space could be written as a function

of the expectation value of a variant of the Polyakov-Susskind loop, and that this could be

related to the bulk expectation value of the thermal scalar. In particular, at the Hagedorn

transition, the free energies of the small black hole and of the long string dominating the

entropy of thermal AdS merge. The free energy of thermal AdS as a function of the norm

of the vev of W (C) becomes a local maximum precisely at the point the thermal scalar

in the bulk becomes tachyonic. The natural endpoint of the condensation of the thermal

scalar is the large black hole, and there is some evidence that the tachyon accounts for the

Bekenstein-Hawking entropy.

W will use this conjecture to estimate the potential energy of the tachyon condensate

(assuming that such a potential makes sense), by demanding that it reproduce the free

energy of the large black hole. The scaling of this dependence with Rads, `p,10, where Rads

is the radius of curvature of AdS5×S5, will imply a coupling between the tachyon potential

and the spacetime Ricci scalar.

The free energy difference between thermal AdS and the “big” black hole is:

I = βF ∝ − r3
h

`3
p,5

(4.12)

in the limit rh À Rads. We propose to equate this to the free energy difference due to

the thermal scalar potential energy V (φ) . We will assume that inside a region of the size

R5r4
h in nine spatial dimensions (we are including the S5 factor), the tachyon potential V

is at its minimum, and outside this region it is at its maximum. The difference δV then

scales as

δV ∼ 1

R7
ads`

3
p,5

∼ 1

R2
ads`

8
p,10

. (4.13)

The dependence on `8
p,10 = g2

s `8
s, with gs the ten-dimensional string coupling and `s the

string scale, is correct if this potential is generated at tree level in closed string theory.

The scaling with g2
s of this tree-level free energy is consistent with the results in [4]. The

dependence on the AdS radius is puzzling. In particular δV seems to disappear in the flat

space limit. In itself this latter point should be related to the fact that the “large” AdS

black hole isn’t a solution in flat space. On the other hand, one might have expected a

term which scales as 1/g2
s `10

s corresponding to the tachyon potential in flat space.

The scaling (4.13) will be arise if there is a coupling

Stachyon =

∫

d10x
√

gV (φ)R , (4.14)

where R is the ten-dimensional Ricci scalar. Couplings of this type for the tachyon of the

bosonic string were calculated using sigma model techniques in [72, 73].7 The lack of a

7Early computations of the tachyon potential can be found in [74 – 77].
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term surviving the Rads → ∞ limit is still a mystery. We note, however, that Yang and

Zwiebach [78] claim that the tachyon potential vanishes both in the perturbative closed

string vacuum and after the tachyon has condensed.

We find this conjectured coupling interesting, as similar couplings appear between

massless open strings on unstable D-branes and the open string tachyons mediating the

decay of these branes. The tree-level effective action for massless and tachyon modes in

this system is well described by the Born-Infeld-like Lagrangian:[25, 67, 79 – 82]

S =

∫

ddxV (T )
√

det (ηµν − 2πα′Fµν) (4.15)

Here V (T ) vanishes as the tachyon condenses and the branes disappear, indicating that

the open string degrees of freedom disappear from the spectrum [25, 24, 26 – 35].

A similar story arises when one studies the worldsheet theory of open strings in the pres-

ence of a tachyon background, discussed in [67, 79]. In that work, the tachyon condensate

led to a potential on the boundary of the worldsheet, making it energetically unfavorable

for the boundary of the string to live where the open string tachyon condenses. Adams et.

al. [23] and McGreevy and Silverstein [37]. have argued that a similar phenomenon occurs

for localized tachyonic winding states in closed string theory.8 In particular, the tachyon

condensate induces a potential on the worldsheet, suppressing fluctuations of the string

into regions with nonzero condensate. Worldsheet correlation functions have support away

from this condensate, indicating that closed string amplitudes vanish because the closed

strings cease to become dynamical when the tachyon condenses. Indeed, if the condensate

of winding tachyons describes the Euclidean black hole, the spacetime ends at the horizon,

which we wish to identify as the location of or boundary of the tachyon condensate.

If the proposed action (4.14) is correct, and if V (T ) vanishes at the minimum of the

tachyon potential, a possible interpretation of this state is that the closed string degrees

of freedom disappear, along the lines of the open string scenario. This is consistent with

indications based on the worldsheet theory [84, 85, 83, 67].

A serious argument for this gravitational “nothing state” as the endpoint of tachyon

condensation will require more than the existence of (4.14). A fuller test of this proposal

would be to compute the coupling of the tachyon to the full effective action for the closed

string graviton and other massless closed string modes. If this action is, schematically

S =

∫

ddx
√

gV (φ)F (R) (4.16)

then we have a better indication that the gravitational dynamics truly decouples at the

endpoint V = 0 of the condensation process. It would be very interesting to check this cou-

pling from either the worldsheet point of view (perhaps computing multipoint correlators

along the lines of [37]) or via string field theory.9

8A similar proposal has been made for the bosonic string tachyon by Yang and Zwiebach, based on

calculations in closed string field theory [78].
9Some preliminary calculations for localized tachyons in closed string field theory appear in [86].
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5. Conclusions

In the first part of this work, we demonstrated that the dynamics of the thermal scalar for

finite-temperature string theory was dual to the dynamics of long strings, and we used this

duality to develop a picture of thermally excited strings as random walks describing the

configurations of these strings. Following this, we made some observations regarding the

endpoint of the condensation of the thermal scalar in AdS spacetimes where string ther-

modynamics is under some control. In particular, we have argued that the thermal scalar

condensate is somehow dual to the AdS-Schwarzchild black hole. It would be interesting

to understand this relationship better. The relationship between the thermal scalar and

long strings might give a better microscopic picture of the origins of black hole entropy.

It would also be interesting to pursue further the suggested decoupling of closed string

dynamics when the Hagedorn tachyon condenses.
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A. An identity for the one- and two-string partition functions

Let us study the two-string partition function. Choose a basis of energy eigenstates |k〉 for

a single string such that the Hamiltonian H has energy eigenvalues Ek. The basis elements

will include different string modes. The partition funnction for a single string is

Zβ,1 =
∑

k

e−βEk (A.1)

A basis of states for two bosonic strings with Hamiltonian H = HA + HB (where

HA,HB have identical spectra) is:

|k, l〉 =
1√
2

(|k〉A|l〉B + |l〉B|k〉A) k 6= l (A.2)

|k, k〉 = |k〉1|k〉2 (A.3)
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The partition function for two strings is

Zβ,2 =
∑

k>l

e−β(Ek+El) +
∑

k

e−2βEk (A.4)

=
1

2

(

Z2
β,1 −

∑

k

e−2βEk

)

+
∑

k

e−2βEk (A.5)

=
1

2

(

Z2
β,1 +

∑

k

e−2βEk

)

(A.6)

Therefore

Zβ,2 −
1

2
Z2

β,1 =
1

2
Z2

2β,1 (A.7)

Inspection of (2.2), (2.3) reveals that Z2β = 2Z[0,2], proving the last line of (2.6).
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